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EXECUTIVE SUMMARY 

The International Committee of the Red Cross (ICRC) has emphasized the need to maintain human 
control over weapon systems and the use of force, to ensure compliance with international law and to 
satisfy ethical concerns. This approach has informed the ICRC’s analysis of the legal, ethical, technical 
and operational questions raised by autonomous weapon systems.  

In June 2018, the ICRC convened a round-table meeting with independent experts in autonomy, arti-
ficial intelligence (AI) and robotics to gain a better understanding of the technical aspects of human 
control, drawing on experience with civilian autonomous systems. This report combines a summary of 
the discussions at that meeting with additional research, and highlights the ICRC’s main conclusions, 
which do not necessarily reflect the views of the participants. Experience in the civilian sector yields 
insights that can inform efforts to ensure meaningful, effective and appropriate human control over 
weapon systems and the use of force. 

Autonomous (robotic) systems operate without human intervention, based on interaction with their 
environment. These systems raise such questions as “How can one ensure effective human control of 
their functioning?” and “How can one foresee the consequences of using them?” The greater the com-
plexity of the environment and the task, the greater the need for direct human control and the less 
one can tolerate autonomy, especially for tasks and in environments that involve risk of death and 
injury to people or damage to property – in other words safety-critical tasks. 

Humans can exert some control over autonomous systems – or specific functions – through supervi-
sory control, meaning “human-on-the-loop” supervision and ability to intervene and deactivate. This 
requires the operator to have: 

 situational awareness 

 enough time to intervene 

 a mechanism through which to intervene (a communication link or physical controls) in order to 
take back control, or to deactivate the system should circumstances require. 

However, human-on-the-loop control is not a panacea, because of such human-machine interaction 
problems as automation bias, lack of operator situational awareness and the moral buffer. 

Predictability and reliability are at the heart of discussions about autonomy in weapon systems, since 
they are essential to achieving compliance with international humanitarian law and avoiding adverse 
consequences for civilians. They are also essential for military command and control. 

It is important to distinguish between: reliability – a measure of how often a system fails; and pre-
dictability – a measure of how the system will perform in a particular circumstance. Reliability is a 
concern in all types of complex system, whereas predictability is a particular problem with autonomous 
systems. There is a further distinction between predictability in a narrow sense of knowing the process 
by which the system functions and carries out a task, and predictability in a broad sense of knowing 
the outcome that will result. 

It is difficult to ensure and verify the predictability and reliability of an autonomous (robotic) system. 
Both factors depend not only on technical design but also on the nature of the environment, the inter-
action of the system with that environment and the complexity of the task. However, setting 
boundaries or imposing constraints on the operation of an autonomous system – in particular on the 
task, the environment, the timeframe of operation and the scope of operation over an area – can 
render the consequences of using such a system more predictable. 

In a broad sense, all autonomous systems are unpredictable to a degree because they are triggered 
by their environment. However, developments in the complexity of software control systems – espe-
cially those based on AI and machine learning – add unpredictability in the narrow sense that the 
process by which the system functions is unpredictable.  
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The “black box” manner in which many machine learning systems function makes it difficult – and in 
many cases impossible – for the user to know how the system reaches its output. Not only are such 
algorithms unpredictable but they are also subject to bias, whether by design or in use. Furthermore, 
they do not provide explanations for their outputs, which seriously complicates establishing trust in 
their use and exacerbates the already significant challenges of testing and verifying the performance 
of autonomous systems. And the vulnerability of AI and machine learning systems to adversarial trick-
ing or spoofing amplifies the core problems of predictability and reliability. 

Computer vision and image recognition are important applications of machine learning. These appli-
cations use deep neural networks (deep learning), of which the functioning is neither predictable nor 
explainable, and such networks can be subject to bias. More fundamentally, machines do not see like 
humans. They have no understanding of meaning or context, which means they make mistakes that a 
human never would. 

It is significant that industry standards for civilian safety-critical autonomous robotic systems – such 
as industrial robots, aircraft autopilot systems and self-driving cars – set stringent requirements re-
garding: human supervision, intervention and deactivation – or fail-safe; predictability and reliability; 
and operational constraints. Leading developers of AI and machine learning have stressed the need 
to ensure human control and judgement in sensitive applications – and to address safety and bias – 
especially where applications can have serious consequences for people’s lives. 

Civilian experience with autonomous systems reinforces and expands some of the ICRC’s viewpoints 
and concerns regarding autonomy in the critical functions of weapon systems. The consequences of 
using autonomous weapon systems are unpredictable because of uncertainty for the user regarding 
the specific target, and the timing and location of any resulting attack. These problems become more 
pronounced as the environment or the task become more complex, or freedom of action in time and 
space increases. Human-on-the-loop supervision, intervention and the ability to deactivate are abso-
lute minimum requirements for countering this risk, but the system must be designed to allow for 
meaningful, timely, human intervention – and even that is no panacea. 

All autonomous weapon systems will always display a degree of unpredictability stemming from their 
interaction with the environment. It might be possible to mitigate this to some extent by imposing 
operational constraints on the task, the timeframe of operation, the scope of operation over an area 
and the environment. However, the use of software control based on AI – and especially machine 
learning, including applications in image recognition – brings with it the risk of inherent unpredicta-
bility, lack of explainability and bias. This heightens the ICRC’s concerns regarding the consequences 
of using AI and machine learning to control the critical functions of weapon systems and raises ques-
tions about its use in decision-support systems for targeting. 

This review of technical issues highlights the difficulty of exerting human control over autonomous 
(weapon) systems and shows how AI and machine learning could exacerbate this problem exponen-
tially. Ultimately it confirms the need for States to work urgently to establish limits on autonomy in 
weapon systems.  

It reinforces the ICRC’s view that States should agree on the type and degree of human control re-
quired to ensure compliance with international law and to satisfy ethical concerns, while also 
underlining its doubts that autonomous weapon systems could be used in compliance with interna-
tional humanitarian law in all but the narrowest of scenarios and the simplest of environments.  
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1. INTRODUCTION 

New technological developments in autonomy, AI and robotics have broad applications across society, 
bringing both opportunities and risks.  Military applications in armed conflict may bring benefits to the 
extent they help belligerents to minimize adverse consequences for civilians and ensure compliance 
with international humanitarian law. However, in weapon systems, they may also give rise to signifi-
cant risks of unintended, and potentially unlawful, effects stemming from a lack of control. Indeed, the 
ICRC’s core concern with autonomous weapon systems is a loss of human control over the use of 
force, which: 

 has potentially serious consequences for protected persons in armed conflict 

 raises significant legal questions regarding compliance with international humanitarian law 

 prompts fundamental ethical concerns about human responsibility for life-and-death decisions. 

States party to the Convention on Certain Convention Weapons have agreed that “human responsibil-
ity” for decisions on the use of weapon systems and the use of force “must be retained”.1 The ICRC’s 
view is that to retain human responsibility in this area States must now agree limits on autonomy in 
weapon systems by specifying the type and degree of human control required to ensure compliance 
with international humanitarian law and other applicable international law, and to satisfy ethical con-
cerns.2 

The ICRC has published its views on the legal3 and ethical4 obligation to ensure human control and has 
proposed that key aspects include: 

 human supervision, intervention and deactivation 

 predictability and reliability 

 operational constraints on tasks, targets, environments, time and space.5 

In June 2018, the ICRC convened a round-table meeting with independent experts on autonomy, AI 
and robotics, to gain a better understanding of the technical aspects of human control, drawing on 
experience and lessons learned with civilian autonomous systems.6 This report summarizes the discus-
sions of that meeting and supplements them with additional research. It highlights key themes and 
conclusions from the perspective of the ICRC, and these do not necessarily reflect the views of the 
participants. 
 

                                                           
1 United Nations, Report of the 2018 session of the Group of Governmental Experts on Emerging Technologies in the Area of Lethal 
Autonomous Weapons Systems, CCW/GGE.1/2018/3, 23 October 2018. Sections III.A.26(b) & III.C.28(f). 
2 ICRC, ICRC Statements to the Convention on Certain Conventional Weapons (CCW) Group of Governmental Experts on Lethal Autonomous 
Weapons Systems, Geneva, 25–29 March 2019. 
3 Ibid. See also: ICRC, ICRC Statements to the Convention on Certain Conventional Weapons (CCW) Group of Governmental Experts on Lethal 

Autonomous Weapons Systems, Geneva, 9–13 April & 27–31 August 2018. N. Davison, “Autonomous weapon systems under international 
humanitarian law”, in United Nations Office for Disarmament Affairs, Perspectives on Lethal Autonomous Weapon Systems, United Nations 
Office for Disarmament Affairs (UNODA) Occasional Papers, No. 30, November 2017, pp. 5–18: 

https://www.icrc.org/en/document/autonomous-weapon-systems-under-international-humanitarian-law. ICRC, Views of the ICRC on 
autonomous weapon systems, 11 April 2016: https://www.icrc.org/en/document/views-icrc-autonomous-weapon-system. 
4 ICRC, Ethics and Autonomous Weapon Systems: An Ethical Basis for Human Control?, report of an expert meeting, 3 April 2018: 

https://www.icrc.org/en/document/ethics-and-autonomous-weapon-systems-ethical-basis-human-control. 
5 ICRC, The Element of Human Control, Working Paper, Convention on Certain Conventional Weapons (CCW) Meeting of High Contracting 
Parties, CCW/MSP/2018/WP.3, 20 November, 2018. 
6 The meeting, Autonomy, artificial intelligence and robotics: Technical aspects of human control, took place at the Humanitarium, 
International Committee of the Red Cross (ICRC), Geneva, on 7-8 June 2018. With thanks to the following experts for their participation: 
Chetan Arora, Subhashis Banerjee (Indian Institute of Technology Delhi, India); Raja Chatila Chatila (Institut des Systèmes Intelligents et de 

Robotique, France); Michael Fisher (University of Liverpool, United Kingdom); François Fleuret (École Polytechnique Fédérale de Lausanne 
(EPFL), Switzerland); Amandeep Singh Gill (Permanent Representative of India to the Conference on Disarmament, Geneva); Robert Hanson 
(Australian National University, Australia); Anja Kaspersen (United Nations Office for Disarmament Affairs, Geneva Branch); Sean Legassick 

(DeepMind, United Kingdom); Maite López-Sánchez (University of Barcelona, Spain); Yoshihiko Nakamura (University of Tokyo, Japan); 
Quang-Cuong Pham (Nangyang Technological University, Singapore); Ludovic Righetti (New York University, USA); and Kerstin Vignard 
(United Nations Institute for Disarmament Research, UNIDIR). The ICRC was represented by: Kathleen Lawand, Neil Davison, Netta Goussac 

and Lukas Hafner (Arms Unit, Legal Division); Laurent Gisel and Lukasz Olejnik (Thematic Unit, Legal Division); and Sasha Radin (Law and 
Policy Forum). Report prepared by Neil Davison. 

https://www.icrc.org/en/document/autonomous-weapon-systems-under-international-humanitarian-law
https://www.icrc.org/en/document/views-icrc-autonomous-weapon-system
https://www.icrc.org/en/document/ethics-and-autonomous-weapon-systems-ethical-basis-human-control
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2. AUTONOMY IN WEAPON SYSTEMS 

2.1 Characteristics 

The ICRC defines an autonomous weapon system as “Any weapon system with autonomy in its critical 
functions. That is, a weapon system that can select (i.e. search for or detect, identify, track, select) and 
attack (i.e. use force against, neutralize, damage or destroy) targets without human intervention.” 
Autonomous weapon systems are not a discrete category of weapon, since autonomy in critical func-
tions could be added to any weapon system. 

These weapon systems self-initiate or trigger an attack or attacks in response to objects or persons 
detected in the environment, based on a general target profile. In other words, after initial activation 
or launch by a human operator, the weapon system – through its sensors, programming (software) 
and connected weapon(s) – takes on the targeting functions that would normally be carried out by 
humans. Consequently, the user will not know the specific target, nor the exact timing and location 
of the attack that will result. This means that autonomous weapon systems all introduce a degree of 
unpredictability into the consequences of the attack(s), creating risks for civilians and civilian objects 
and challenges for compliance with international humanitarian law. These weapon systems are clearly 
different from others – whether directly or remotely controlled by humans – where the user chooses 
the specific target, timing and location of the attack at the point of launch or activation (even if there 
may be a time-delay in reaching the target). 

A weapon might have autonomy in its critical targeting functions without having “system-level” auton-
omy, i.e. autonomy in all other functions (such as flight or navigation). Furthermore, autonomy in 
critical functions is not dependent on technical sophistication; a weapon could be very simple and 
“unintelligent” in its design, but highly autonomous in its targeting functions. In other words, autono-
mous weapon systems do not necessarily incorporate AI and machine learning; existing weapons with 
autonomy in their critical functions generally use simple, rule-based control software to select and 
attack targets.7 

2.2 Trends in existing weapons 

A non-exhaustive study by the Stockholm International Peace Research Institute found 154 existing 
weapon systems with autonomy in some aspects of targeting, including 49 that fall within the ICRC’s 
definition of autonomous weapon systems, and 50 that employ automatic target recognition as a de-
cision-support tool for human operators, who then decide whether to authorize or initiate an attack.8 

Existing autonomous weapon systems include: 

 air defence systems – short and long range – with autonomous modes for shooting down incoming 
missiles, rockets, mortars, aircraft and drones 

 active protection systems, which function in a similar way to protect tanks or armoured vehicles 
from incoming missiles or other projectiles 

 some loitering weapons – a cross between a missile and a drone – which have autonomous modes 
enabling them to target radars based on a pre-programmed radio-frequency signature. 

                                                           
7 ICRC, ICRC Statement to the Convention on Certain Conventional Weapons (CCW) Group of Governmental Experts on Lethal Autonomous 
Weapons Systems, Geneva, 25–29 March 2019. Agenda item 5(b). This is one reason why the ICRC has seen notions of “automated” and 
“autonomous” weapons as interchangeable for the purpose of its legal analysis. 
8 V. Boulanin and M. Verbruggen, Mapping the Development of Autonomy in Weapon Systems, Stockholm International Peace Research 
Institute (SIPRI), November, 2017. ICRC, Autonomous weapon systems: Implications of increasing autonomy in the critical functions of 
weapons, 2016, Report of an expert meeting: https://www.icrc.org/en/publication/4283-autonomous-weapons-systems; ICRC, 

Autonomous weapon systems: Technical, military, legal and humanitarian aspects, 2014, Report of an expert meeting: 
https://www.icrc.org/en/document/report-icrc-meeting-autonomous-weapon-systems-26-28-march-2014. 

https://www.icrc.org/en/publication/4283-autonomous-weapons-systems
https://www.icrc.org/en/document/report-icrc-meeting-autonomous-weapon-systems-26-28-march-2014
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Generally, current autonomous weapon systems are anti-materiel weapons that employ relatively 
simple sensor and software technology to identify the signatures of pre-defined objects such as mis-
siles, rockets, mortars, aircraft, drones, tanks, ships, submarines and radar systems. Almost all are 
human-supervised in real time; a human operator can intervene and divert or deactivate the system, 
and in many cases can verify a target before the attack takes place. 

There are also significant operational constraints on: 

 the types of task the weapons are used for – primarily the protection of ships, military bases or 
territory from incoming projectiles 

 the targets they attack – only objects or vehicles 

 the environments in which they are used – for example at sea or around military bases, where 
risks to civilians and civilian objects are lower than in populated areas 

 the timeframe and scope of operation – autonomous modes are mostly activated for limited pe-
riods and the vast majority of systems are constrained in space and are not mobile. 

There are no autonomous weapon systems in use today that directly attack human targets without 
human authorization. However, some countries have developed or acquired “sentry” weapons, which 
they deploy at borders and perimeters or mount on vehicles. These identify and select human targets 
autonomously but require human verification and authorization to fire.9 

2.3 Possible future developments 

Autonomy in targeting is a function that could be applied to any weapon system, in particular the rap-
idly expanding array of robotic weapon systems, in the air, on land and at sea – including swarms of 
small robots. This is an area of significant investment and emphasis for many armed forces, and the 
question is not so much whether we will see more weaponized robots, but whether and by what means 
they will remain under human control. Today’s remote-controlled weapons could become tomorrow’s 
autonomous weapons with just a software upgrade. 

The central element of any future autonomous weapon system will be the software. Military powers 
are investing in AI for a wide range of applications10 and significant efforts are already underway to 
harness developments in image, facial and behaviour recognition using AI and machine learning tech-
niques for intelligence gathering and “automatic target recognition” to identify people, objects or 
patterns.11 Although not all autonomous weapon systems incorporate AI and machine learning, this 
software could form the basis of future autonomous weapon systems. Software systems – whether AI-
enabled or not – could directly activate a weapon, making it autonomous. However, early examples of 

                                                           
9 Although manufacturers have offered versions with autonomous attack capability. See, for example: S. Parkin, “Killer robots: The soldiers 
that never sleep”, BBC, 16 July 2015: http://www.bbc.com/future/story/20150715-killer-robots-the-soldiers-that-never-sleep. 
10 ICRC, Artificial intelligence and machine learning in armed conflict: A human-centred approach, 6 June 2019: 

https://www.icrc.org/en/document/artificial-intelligence-and-machine-learning-armed-conflict-human-centred-approach. P. Scharre, 
“Killer Apps: The Real Dangers of an AI Arms Race”, Foreign Affairs, May/June 2019. S. Radin, “Expert views on the frontiers of artificial 
intelligence and conflict”, ICRC Humanitarian Law & Policy Blog, 19 March 2019: https://blogs.icrc.org/law-and-policy/2019/03/19/expert-

views-frontiers-artificial-intelligence-conflict. M. Horowitz et al., Artificial Intelligence and International Security, Center for a New 
American Security (CNAS), July 2018. R. Surber, Artificial Intelligence: Autonomous Technology (AT), Lethal Autonomous Weapons Systems 
(LAWS) and Peace Time Threats, ICT4Peace Foundation and the Zurich Hub for Ethics and Technology, 21 February 2018. D. Lewis, G. Blum, 

and N. Modirzadehm, War-Algorithm Accountability, Harvard Law School Program on International Law and Armed Conflict (HLS PILAC), 
Harvard University, 31 August 2016. 
11 B. Schachter, Automatic Target Recognition, Third Edition, SPIE, 2018. SBIR, Automatic Target Recognition of Personnel and Vehicles from 

an Unmanned Aerial System Using Learning Algorithms, DoD 2018.1 SBIR Solicitation, 2018: 
https://www.sbir.gov/sbirsearch/detail/1413823. 

http://www.bbc.com/future/story/20150715-killer-robots-the-soldiers-that-never-sleep
https://www.icrc.org/en/document/artificial-intelligence-and-machine-learning-armed-conflict-human-centred-approach
https://blogs.icrc.org/law-and-policy/2019/03/19/expert-views-frontiers-artificial-intelligence-conflict
https://blogs.icrc.org/law-and-policy/2019/03/19/expert-views-frontiers-artificial-intelligence-conflict
https://www.sbir.gov/sbirsearch/detail/1413823
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AI and machine learning applications take the form of decision-support systems to “advise” human 
fighters on matters that include targeting decisions.12 

Beyond software, other developments include shifts: 

 from anti-materiel systems to anti-personnel systems 

 from static (fixed) “defensive” systems to mobile “offensive” systems actively searching for targets 
over an area 

 from single-platform systems to swarms of several hundred operating together13 

 from use in armed conflict to use in law enforcement operations.14 
 

3. HUMAN CONTROL 

3.1 What is an autonomous system? 

An autonomous (robotic) system or function is a closed loop (“sense-think-act”). The machine 

 receives information from its environment through sensors (“sense”) 

 processes these data with control software (“think”) 

 based on its analysis, performs an action (“act”) without further human intervention. 

Autonomy, therefore, is the ability of the system to act without direct human intervention, although 
it is a continuum with various levels and many grey areas. In civilian robotics, some autonomous sys-
tems perform prescribed actions that are fixed in advance and do not change in response to the 
environment (such as an industrial manufacturing robot). These are sometimes referred to as “auto-
matic”. Other systems initiate or adjust their actions or performance based on feedback from the 
environment (“automated”) and more sophisticated systems combine environmental feedback with 
the system’s own analysis regarding its current situation (“autonomous”). Increasing autonomy is gen-
erally equated with greater adaptation to the environment and is sometimes presented as increased 
“intelligence” – or even “artificial intelligence” – for a particular task. That said, the perception of both 
autonomy and AI is constantly shifting, as advances in technology mean that some systems once con-
sidered “autonomous” and “intelligent” are now classed merely as “automated”. Importantly, there is 
no clear technical distinction between automated and autonomous systems, nor is there universal 
agreement on the meaning of these terms, and for the remainder of this report we will use “autono-
mous” to represent both of these concepts of “systems that interact with their environment”. 

3.2 Human control over autonomous systems?  

By definition, an autonomous system or function is to some degree out of human control. Neverthe-
less, humans can exert some control during design and development, at the point of activation for a 
specific task and during operation, for example by interrupting its functioning.15 In the context of au-
tonomous weapon systems, the International Panel on the Regulation of Autonomous Weapons 

                                                           
12 See, for example: S. Freedberg Jr, “ATLAS: Killer Robot? No. Virtual Crewman? Yes.” Breaking Defense, 4 March 2019: 
https://breakingdefense.com/2019/03/atlas-killer-robot-no-virtual-crewman-yes. D. Lewis, N. Modirzadeh, and G. Blum, “The Pentagon’s 

New Algorithmic-Warfare Team”, Lawfare, 2017: https://www.lawfareblog.com/pentagons-new-algorithmic-warfare-team. J. Keller, 
“DARPA TRACE program using advanced algorithms, embedded computing for radar target recognition”, Military & Aerospace Electronics, 
2015: http://www.militaryaerospace.com/articles/2015/07/hpec-radar-target-recognition.html. 
13 D. Hambling, Change in the air: Disruptive Developments in Armed UAV Technology, United Nations Institute for Disarmament Research 
(UNIDIR), 2018. 
14 M. Brehm, Constraints and Requirements on the Use of Autonomous Weapon Systems Under International Humanitarian and Human 

Rights Law, Geneva Academy of International Humanitarian Law and Human Rights, Academy briefing no. 9, May 2017, pp. 42–68. 
15 For an analysis of this concept applied to autonomous weapon systems see N. Davison, op. cit. 

https://breakingdefense.com/2019/03/atlas-killer-robot-no-virtual-crewman-yes
https://www.lawfareblog.com/pentagons-new-algorithmic-warfare-team
http://www.militaryaerospace.com/articles/2015/07/hpec-radar-target-recognition.html
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(iPRAW) has distinguished between “control by design” (i.e. in design and development) and “control 
in use” (i.e. in activation and operation), while stressing the importance of both.16 

There is no universal model for optimal human-machine interaction with autonomous (robotic) sys-
tems, since the need for human control, or the level of autonomy that one can tolerate, is linked to 
the complexity of the environment in which the system operates and the complexity of the task it 
carries out. Generally, the greater the complexity in either the greater the need for direct human con-
trol and less tolerance of autonomy, especially for tasks and in environments where a system failure 
could kill or injure people or damage property, i.e. “safety-critical” tasks.17 Use of an autonomous sys-
tem in an uncontrolled, unpredictable environment carries a high risk of malfunctioning and 
unexpected results. Nevertheless, current technical developments in software – complex control soft-
ware including but not limited to AI and machine learning techniques – seek to increase the level of 
autonomy that can be tolerated for more complex tasks in more complex environments.18 

3.3 Modes of control 

Human control over robotic systems can take several forms. 

Direct control 

Requires constant intervention by a human operator to directly or remotely control the functions of 
the system, which are therefore not autonomous. 

Shared control 

The human operator directly controls some functions while the machine controls other functions un-
der the supervision of the operator. Examples include certain non-autonomous robotic weapon 
systems, such as armed drones. In these systems, a human operator directly (albeit remotely) controls 
the critical targeting functions, while the machine might control flight and navigation functions auton-
omously with human supervision. 

Shared control aims to: 

 exploit the benefits of human control (global situational awareness and judgement) and machine 
control (specific actions at high speed and accuracy) 

 partly circumvent the limitations of human control (limited attention span and field of perception, 
stress and fatigue) and machine control (limited decision-making capacity, sensing uncertainties 
and limited situational awareness). 

Supervisory control 

A robotic system performs tasks autonomously while the human operator supervises, and the operator 
can provide instructions and/or intervene and take back control, as required.19 In general, enabling a 
robotic system to perform tasks autonomously while retaining human supervisory control requires 
knowledge of how the system will function in the future – “predictive control” – so that the user can 
judge when intervention will be necessary, and in what form. This, in turn, requires knowledge of the 

                                                           
16 iPRAW, Concluding Report: Recommendations to the GGE. International Panel on the Regulation of Autonomous Weapons (iPRAW), 
December 2018, p. 14. 
17 J. Knight, “Safety-critical Systems: Challenges and Directions”, Proceedings of the 24th International Conference on Software Engineering, 
February 2002. 
18 However, many cutting-edge autonomous robotic systems, such as the humanoid and dog-like robots developed by Boston Dynamics, do 

not use AI and machine learning software. 
19 B. Siciliano and O. Khatib, (eds) Springer Handbook of Robotics, 2nd Edition, 2016, p. 1091. T. Sheridan, Telerobotics, Automation, and 
Human Supervisory Control, MIT Press, 1992. For an analysis applying this concept to autonomous weapon systems see N. Sharkey, 

“Staying in the loop: Human supervisory control of weapons”, in N. Bhuta et al. (eds), Autonomous Weapons Systems: Law, Ethics, Policy, 
Cambridge University Press, 2016, pp. 23–38. 
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environment in the future; in other words a predictable environment. In the civilian world, supervisory 
control is often used in applications where direct or shared control of the robotic system is not possible 
due to communication delays between instructions sent by the operator and the subsequent action of 
the system, such as in systems operating in outer space or deep under the sea. Most existing autono-
mous weapon systems operate under some form of supervisory control for specific tasks in highly 
constrained – and therefore relatively predictable – environments.20 

3.4 Human-on-the-loop 

In most real-world situations, the operating environment is dynamic and unpredictable, and predictive 
control is therefore difficult. However, human supervisory control enables operators to exert some 
control through “human-on-the-loop” supervision and intervention. There may be more than one 
loop through which the human can intervene, with different results, such as a low-level control loop 
for specific functions (control level) and/or a high-level control loop for more generalized goals (plan-
ning level). 

In any case, effective human-on-the-loop supervision and intervention require the human operator to 
have continuous situational awareness, enough time to intervene (i.e. override, deactivate or take 
back control) and a mechanism through which to intervene, notably a permanent communication link 
(for remotely operating systems) and/or direct physical controls, that enable the user to take back 
control or deactivate the system. 

Unfortunately, the human-on-the-loop model – even if it satisfies the above criteria – is not a magic 
bullet for ensuring effective control over autonomous (robotic) systems because of well-known hu-
man-machine interaction problems, in particular: 

 automation bias – or over-trust in the machine – where humans place too much confidence in the 
operation of an autonomous machine 

 lack of operator situational awareness (insufficient knowledge of the state of the system at the 
time of intervention, as explained below) 

 the moral buffer, where the human operator shifts moral responsibility and accountability to the 
machine as a perceived legitimate authority.21 

It is also necessary to consider whether “safe takeover” is possible, and at which point in time. There 
may be negative consequences if there is limited time available – due to the speed of the robotic op-
eration – and/or a delay before the human operator can take back control. One example would be a 
human operator not having time to take back control over a self-driving car to apply the brakes and 
prevent a collision. This type of problem already arises with existing human-supervised autonomous 
weapon systems, such as air defence systems, which have shot down aircraft in “friendly fire” accidents 
before an operator could deactivate them.22 Complicating matters, immediate interruption of an au-
tonomous system by a human operator can sometimes be more dangerous than waiting to intervene. 
An aircraft cannot stop in mid-air, for example, and a switch from autopilot to manual control can be 
catastrophic if the pilot does not have current situational awareness.23 In sum, one cannot assume 
that human-on-the-loop intervention will be an effective way of mitigating the risks of loss of control 
inherent to autonomous (robotic) systems. 

A human operator override function – effectively a “big red button” to deactivate the system – is 
generally part of the design of civilian autonomous (robotic) systems that perform safety-critical tasks. 

                                                           
20 ICRC, Autonomous weapon systems: Implications of increasing autonomy in the critical functions of weapons, op. cit. 
21 M Cummings, “Automation and Accountability in Decision Support System Interface Design”, Journal of Technology Studies, Vol. XXXII, 
No. 1, 2006. 
22 J. Hawley, Automation and the Patriot Air and Missile Defense System, Center for a New American Security (CNAS), 25 January 2017. 
23 R. Charette, “Air France Flight 447 Crash Causes in Part Point to Automation Paradox”, IEEE Spectrum, 10 July 2012: 
https://spectrum.ieee.org/riskfactor/aerospace/aviation/air-france-flight-447-crash-caused-by-a-combination-of-factors. 
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This can help avert negative outcomes, but not always, given the problems of human-machine inter-
action and safe takeover. Built-in fail-safe mechanisms are therefore an important way of avoiding 
negative consequences in situations where human intervention is neither possible nor safe. It is possi-
ble to design a fail-safe mechanism to deactivate the system in specific circumstances, such as when it 
encounters an unknown environment, or when a malfunction occurs. However, even a fail-safe such 
as an immediate stop can have negative consequences, depending on the nature of the system and 
the environment, such as self-driving car travelling at speed on a busy highway. 

One lesson from civilian robotics is that the appropriate form of human control may depend on the 
specific task the system is carrying out, the environment of use and, in particular, the timescale over 
which it operates. In weapon systems, maintaining either direct (human) control over critical func-
tions of targeting or shared control – where critical functions remain under direct control while other 
functions may be autonomous – is the most effective way of addressing the unpredictability caused 
by autonomy in targeting (see also Sections 2 and 4). Where these critical functions are autonomous, 
supervisory control with a “human-on-the-loop” may only be meaningful and effective if there is 
enough time for the operator to select and approve one of several options proposed by the system, 
to override and take back control, or to deactivate the system, before the weapon fires at a target. 
Given the importance of the time available for effective human intervention, one approach to human 
control over autonomous weapon systems might be to design safeguards that ensure there is always 
an alert for the operator, and enough time available for human intervention or authorization, before 
the system initiates an attack. 
 

4. PREDICTABILITY AND RELIABILITY 

Predictability and reliability are at the heart of discussions about autonomy in weapon systems, since 
they are essential to ensuring compliance with international humanitarian law and avoiding adverse 
consequences for civilians. They are also essential for military command and control.24 It is important 
to be clear what we mean by predictability and reliability, as these terms are sometimes used and 
understood in different ways. 

Predictability 

In discussions about autonomous weapon systems, the ICRC has understood predictability as the abil-
ity to “say or estimate that a specified thing will happen in the future or will be a consequence of 
something”, in other words knowledge of how the weapon system will function in any given circum-
stances of use, including the effects that will result.25 This is predictability in a broad sense of knowing 
the outcome that will result from activating the autonomous weapon system in a particular circum-
stance. A sub-component of this is predictability in a narrow sense of knowing the process by which 
the system functions and carries out a specific task or function. Both are important for ensuring com-
pliance with international humanitarian law. 

Reliability 

Reliability is “the quality of being trustworthy or performing consistently well”, in other words how 
consistently the weapon system will function as intended, without failures (malfunctions) or unin-
tended effects. Reliability is, in effect, a measure of how often a system fails, and is a narrower concept 
than predictability. A given system can reliably carry out a specific function without being predictable 
in the effects that will result in a particular circumstance. A system may be predictable in its general 
functioning and likely effects, but subject to frequent failures. 

                                                           
24 ICRC, ICRC Statement to the Convention on Certain Conventional Weapons (CCW) Group of Governmental Experts on Lethal Autonomous 

Weapons Systems, Geneva, 25–29 March 2019. Agenda item 5(c). 
25 N. Davison, op. cit. 
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Examples 

Anti-personnel landmines 

Mines, which have been described as “rudimentary autonomous weapon systems”26, illustrate 
the differences between reliability and predictability, and between broad and narrow notions 
of predictability, as well as the role of the environment in unpredictability. An anti-personnel 
landmine might be highly reliable (i.e. always detonates when activated by a certain weight) 
and highly predictable in a narrow sense (i.e. triggers when anything over a certain weight 
presses on it). Despite this, landmines are highly unpredictable in a broad sense of the conse-
quences of their use, because it is not known who (or what) will trigger them, or when. This 
type of unpredictability has led to indiscriminate effects in most contexts where anti-personnel 
mines have been used, with severe consequences for civilians, and led to the prohibition of 
anti-personnel landmines in 1997 through the Anti-Personnel Mine Ban Convention. 

Anti-radar loitering weapons 

Anti-radar loitering weapons in autonomous mode illustrate the same issue. A loitering 
weapon might be very reliable (i.e. always detects a radar signature and then moves towards 
it and detonates) and highly predictable in a narrow sense (i.e. only attacks when it detects a 
specific type of radar signature). And yet it remains highly unpredictable in a broad sense of 
the consequences of an attack, because the user does not know which radar it will attack, 
where the attack will take place or when, or whether there are civilians or civilian objects near 
the target. 

As these examples illustrate, autonomous weapon systems are unpredictable in a broad sense, be-
cause they are triggered by their environment at a time and place unknown to the user who activates 
them. Moreover, developments in the complexity of software control systems – especially those em-
ploying AI and machine learning – may add unpredictability in a narrow sense of the process by which 
the system functions (see Section 5). Unpredictability raises questions regarding compliance with in-
ternational humanitarian law since it will be difficult for a commander or operator to comply with their 
legal obligations regarding the conduct of hostilities if they cannot foresee the consequences of acti-
vating an autonomous weapon system.27 

Factors affecting predictability and reliability 

Predictability and reliability are not inherent properties of the technical design of an autonomous ro-
botic system. They also depend on: 

 the nature of the environment 

 the interaction of the system with the environment 

 the complexity of the task. 

An autonomous robotic system that functions predictably in a specific environment may become un-
predictable if that environment changes or if it is used in a different environment. Predictability and 
reliability in carrying out a task will also depend on the complexity of the task and the options available 
to the system, which will constrain its eventual action (output) in a given situation. 

                                                           
26 United States Department of Defense, Department of Defense Law of War Manual, Section 6.5.9.1, Description and Examples of the Use 

of Autonomy in Weapon Systems, 2015, p. 328: “Some weapons may have autonomous functions. For example, mines may be regarded as 
rudimentary autonomous weapons because they are designed to explode by the presence, proximity, or contact of a person or vehicle, 
rather than by the decision of the operator.” 
27 ICRC, ICRC Statement to the Convention on Certain Conventional Weapons (CCW) Group of Governmental Experts on Lethal Autonomous 
Weapons Systems, Geneva, 25–29 March 2019. Agenda item 5(a). 
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The technical design of the system will also have a significant impact. Increased complexity, including 
in the software and the sensors that collect data – for example, combining multiple sensor inputs 
and/or increasing the complexity of the algorithm used to analyse input data – will lead to less pre-
dictability, raising specific concerns about accidents and reliability.28 This is the case even for 
deterministic (rule-based) software and is even more applicable to AI and machine learning ap-
proaches, which may be unpredictable by design (see Section 5). Even deterministic systems do not 
function in a broadly predictable fashion, owing to complexity (in design and task) and interaction with 
a varying environment. Swarming robots would raise particularly serious concerns regarding unpre-
dictability, since the interaction of multiple systems represents an immense increase in complexity, 
which can also lead to “emergent” unpredictable behaviours.29 

Reducing unpredictability 

Setting boundaries on the operation of an autonomous robotic system is one approach to reducing 
unpredictability. One way of achieving this is to constrain the environment in which the system oper-
ates. Although there will always be unknown environmental variables in the real world, some 
environments – such as airspace and undersea – are generally less complex and therefore less chal-
lenging in terms of predicting the environment’s impact on how a system will function; the less the 
complexity and variation in the environment, the higher the potential level of predictability. This is one 
reason why it is much easier to ensure the predictability and reliability of autopilot systems for aircraft 
than it is for self-driving cars. Additional constraints on the timeframe of autonomous operation and 
scope of operation over an area can also reduce unpredictability by limiting the exposure of the sys-
tem to variations over time in the environment in which it is operating. These are all factors that one 
may need to consider in discussions about ensuring human control over weapon systems. 

4.1 Testing 

Verifying and validating autonomous robotic systems that respond or adapt to their environment, in 
order to ensure sufficient predictability and reliability, brings its own challenges. Testing normally in-
cludes computer simulations and real-world physical tests to assess the response of the system in the 
different circumstances it may encounter. However, it is not possible to test all the potential inputs 
and outputs of the system for all circumstances, or even to know what percentage of the possible 
outputs one has tested. This means that it is difficult to formally verify and validate the predictability 
of the system and its reliability, or probability of failure. Considering weapon systems, it is therefore 
difficult to ensure that an autonomous weapon system is capable of being used in compliance with 
international humanitarian law,30 especially if the system incorporates AI – and particularly machine 
learning – control software.31 

The more complex the environment, the more acute the problem of verification and validation. Given 
the limits of testing in the real world, computer simulations are used to increase the number of sce-
narios that can be tested. However, simulations bring their own difficulties, as building an accurate 
simulation is difficult and requires knowledge of all critical scenarios and how to re-create them faith-
fully. Simulations cannot generally replicate the real-world environment, even for simple tasks. The 

                                                           
28 UNIDIR, Safety, Unintentional Risk and Accidents in the Weaponization of Increasingly Autonomous Technologies, UNIDIR, 2016. 
P. Scharre, Autonomous Weapons and Operational Risk, CNAS, February 2016. 
29 P. Scharre, Robotics on the Battlefield Part II: The Coming Swarm, CNAS, October 2014. 
30 ICRC, International Humanitarian Law and the Challenges of Contemporary Armed Conflicts, report for the 32nd International Conference 
of the Red Cross and Red Crescent, Geneva, October 2015, pp. 38–47: https://www.icrc.org/en/document/international-humanitarian-law-
and-challenges-contemporary-armed-conflicts. 
31 N. Goussac, “Safety net or tangled web: Legal reviews of AI in weapons and war-fighting”, ICRC Humanitarian Law & Policy Blog, 18 April 
2019: https://blogs.icrc.org/law-and-policy/2019/04/18/safety-net-tangled-web-legal-reviews-ai-weapons-war-fighting. D. Lewis, “Legal 
reviews of weapons, means and methods of warfare involving artificial intelligence: 16 elements to consider”, ICRC Humanitarian Law & 

Policy Blog, 21 March 2019: https://blogs.icrc.org/law-and-policy/2019/03/21/legal-reviews-weapons-means-methods-warfare-artificial-
intelligence-16-elements-consider. 

https://www.icrc.org/en/document/international-humanitarian-law-and-challenges-contemporary-armed-conflicts
https://www.icrc.org/en/document/international-humanitarian-law-and-challenges-contemporary-armed-conflicts
https://blogs.icrc.org/law-and-policy/2019/04/18/safety-net-tangled-web-legal-reviews-ai-weapons-war-fighting
https://blogs.icrc.org/law-and-policy/2019/03/21/legal-reviews-weapons-means-methods-warfare-artificial-intelligence-16-elements-consider
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design of a simulation can also introduce bias in the testing results and in the functioning of AI algo-
rithms trained using simulations before being deployed (see Section 5). The question of how to test 
the accuracy of a simulation can therefore become an indefinite problem. 

An example – self-driving cars 

Testing in real traffic conditions is used to assess the reliability and predictability of self-driving cars, 
but it is very hard to test for “edge cases” –scenarios that occur relatively rarely but might result in 
failure of the system or unpredictable consequences. Obtaining enough data may require millions or 
billions of kilometres of testing. Furthermore, even if one combines real-world tests and simulations, 
it is impossible to test for every possible scenario. 

This being so, any assessment of the predictability and reliability of an autonomous robotic system can 
only ever be an estimate, and it is difficult to provide a guarantee of performance – one can speak only 
in terms of probability. Quantifying the predictability and reliability of an autonomous system – or 
function – is therefore difficult, and it may be hard to decide what level would be sufficient. For ex-
ample, if the sensors and image-recognition system for a self-driving car identify an object as “89% 
stop sign” or “94% pedestrian”, what does this mean in terms of predictability and reliability? Must 
these figures be 99.9%? And if so, how can one be certain of having achieved this figure if it is only ever 
an estimate? Stringent standards exist for simpler autonomous systems – such as aircraft autopilots – 
(see Section 7.1), but these methods do not yet extend to more complex systems, such as self-driving 
cars. The implications for any use of these technologies in weapon systems are clearly significant. 

An additional complication – adversarial conditions 

Adversarial conditions bring further complications in testing – and in the real world (see also Section 
6). By “adversarial conditions” we mean changes to the environment designed to trick or spoof the 
system. A well-known example is research showing that it is possible to trick the image recognition 
systems used in self-driving cars into thinking a stop sign is a speed limit sign just by placing small 
stickers on the sign.32 This is already a significant problem in environments, such as city streets, where 
one might expect that most people are not deliberately trying to fool the system.33 However, in the 
context of armed conflict, and weapon systems with autonomous functions, the problem would be 
exponentially worse, as the user could assume their adversary would constantly, and deliberately, be 
attempting to spoof these systems.34 
 

5. ALGORITHMS, AI AND MACHINE LEARNING 

An algorithm is a sequence of programming instructions – or rules – which, when executed by a com-
puter, performs a calculation or solves a given problem.35 A computer using an algorithm has the 
advantage, compared to humans, that it can process large amounts of data very quickly and accurately. 

In general, these deterministic (rule-based) algorithms are predictable in their output for a given in-
put. But this does not mean they are necessarily predictable in the consequences of applying that 
output in a given circumstance (see Section 4 on narrow versus broad notions of predictability). De-
terministic algorithms are also relatively transparent in their programming, and therefore 
understandable (assuming one has access to the source code). In rule-based programming, the func-
tioning of the algorithm (potential inputs and the resulting outputs of the system they control) is fixed 

                                                           
32 K. Eykholt, et al., Robust Physical-World Attacks on Deep Learning Models, Cornell University, v.5, 10 April 2018: 

https://arxiv.org/abs/1707.08945. 
33 R. Brooks, “The Big Problem With Self-Driving Cars Is People”, IEEE Spectrum, 27 July 2017: 
https://spectrum.ieee.org/transportation/self-driving/the-big-problem-with-selfdriving-cars-is-people. 
34 P. Scharre, 2016, op. cit. 
35 Oxford English Dictionary, Algorithm: https://en.oxforddictionaries.com/definition/algorithm. 
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at the point of design. Such algorithms enable an autonomous robotic system to react to its environ-
ment or be triggered by it, but the system has little ability to adapt to that environment. This is how 
many existing autonomous weapon systems function, such as air defence systems; sensors detect an 
incoming object and the algorithm controlling the system triggers the weapon to fire if the object is 
moving within a certain range of speeds and within a specific trajectory. 

Adaptability to the environment 

The more complex the environment, the greater the adaptability needed to ensure the autonomous 
functioning of a robotic system. For example, an autonomous robot navigating on land will require 
greater adaptability than one navigating in the air or under the sea. One way to increase adaptability 
is to use more complex algorithms, which can assess the environment and act to adapt to that envi-
ronment in carrying out a task. A system is given a generalized goal or objective, and the algorithm 
decides how to achieve it. For example, a mobile autonomous robotic system is given the goal of mov-
ing to a specific destination but the system itself determines the route it will take based on its 
programming and on data inputs from sensors that detect its environment. The user may also provide 
it with other sources of data at the outset, such as a map of the area in the case of a self-driving car. 
This contrasts with a more directive algorithm, which would specify both the destination and the route 
and therefore not allow the system to adapt to its environment. 

Increasing adaptability in an autonomous system is generally equated with increasingly “intelligent” 
behaviour – or AI. Definitions of AI vary, but they are computer programs that carry out tasks – often 
associated with human intelligence – that require cognition, planning, reasoning or learning. What is 
considered AI has changed over time: and autonomous systems once considered “intelligent” – such 
as aircraft autopilot systems – are now seen as merely automated.36 There is growing interest in the 
military application of AI for purposes that include weapon systems and decision support more 
broadly, whether for targeting or for other military applications.37 

5.1 Machine learning 

Rule-based AI systems – “expert systems” – are used in autonomous robotic systems that can perform 
increasingly complex tasks without human intervention, such as robots that can walk and move and 
the overall control software for self-driving cars. However, there is a significant focus today on a par-
ticular type of AI: machine learning. 

What is machine learning? 

Machine learning systems are AI systems that are trained on – and learn from – data, which define 
the way they function. 

Instead of following pre-programmed rules, machine learning systems build their own model (or 
“knowledge”) based on sample data input representing the input or task they are to learn, and then 
use this model to produce their output, which may consist of carrying out actions, identifying patterns 
or making predictions.38 

Unlike when they are developing other AI algorithms such as expert systems, described above, devel-
opers do not specify how the algorithm functions with rules, or provide it with knowledge about the 
task or the environment; the functioning of a machine learning system is data driven. The outputs of 

                                                           
36 UNIDIR, Artificial Intelligence, a primer for CCW delegates. The Weaponization of Increasingly Autonomous Technologies, UNIDIR 

Resources No. 8, p. 2. 
37 See for example S. Hill, and N. Marsan, “Artificial Intelligence and Accountability: A Multinational Legal Perspective”, in Big Data and 
Artificial Intelligence for Military Decision Making, Meeting proceedings STO-MP-IST-160, NATO, 2018. 
38 For a useful overview of machine learning see Royal Society, Machine learning: the power and promise of computers that learn by 
example, April 2017, pp. 16–31. 
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these systems depend on the type of learning process and the resulting model that the system learns, 
which in turn depends on the data to which the algorithm is exposed. As a result, the outputs of ma-
chine learning systems and the functions they control are much more unpredictable than those of 
expert systems encoded with pre-defined instructions and knowledge, since the developer or user 
does not know what the system learns.39 

Approaches to machine learning 

There is a wide variety of machine learning approaches, which differ in the way learning takes place, 
the nature of the models and the problems they solve or the tasks they perform. However, they gen-
erally follow a two-step process. First, there is a training phase during which data are provided by the 
developer as inputs from which the algorithm will develop its model (or knowledge) as the output. 

This training may take the form of: 

 supervised learning – where developers categorize or label the data inputs (e.g. the content of an 
image) 

or 

 unsupervised learning, where the algorithm creates its own categories based on the training data 
(e.g. unlabelled images). 

The second phase is the deployment of the algorithm, where it performs a task or solves a problem. 
Here the algorithm is exposed to data in the environment as inputs for that task and computes a solu-
tion, recommendation or prediction using the model it developed during the training phase. 

These two steps are usually kept separate in most of today’s civilian applications, and training stops 
before the algorithm is deployed (off-line learning), as combining these stages leads to increased er-
rors and failure. However, some algorithms continue learning after deployment (online learning), 
thereby constantly changing the model on which they process data inputs to produce their results, or 
outputs. This adds an additional layer of complexity and unpredictability owing to changes in function-
ing in response to real-time data. One example of this was the conversational chat bot that was quickly 
reduced to expressing extremist views.40 

One general difficulty with training machine learning algorithms is that it is hard to know when training 
is complete, i.e. when the algorithm has acquired a model that is sufficiently good for it to solve a 
problem based on data it is exposed to in the environment during that task. Furthermore, one can only 
assess the performance and reliability of the system for a given task against the testing and validation 
data set, since it is not possible to train an algorithm with every possible data input it might encounter 
in the environment. 

Machine learning techniques 

We can divide machine learning techniques into those where there is some organized structure to 
capture knowledge in a model and those where there is no such structure, such as a neural network. 

It is possible for a user to interrogate a machine learning system that structures the knowledge it has 
learned, to try and understand why the algorithm has produced a certain output, although the com-
plexity and quantity of the information available can make this very difficult. 

Unstructured machine learning systems, on the other hand, produce their output without any expla-
nation. They constitute “black boxes”, in that we do not know how or why they have produced a 

                                                           
39 M. Lopez-Sanchez, “Some Insights on Artificial Intelligence Autonomy in Military Technologies”, in Autonomy in Future Military and 
Security Technologies: Implications for Law, Peace, and Conflict, The Richardson Institute, Lancaster University, UK, 10 November 2017, 
pp. 5–17. 
40 D. Alba, “It's Your Fault Microsoft's Teen AI Turned Into Such a Jerk”, Wired, 25 March 2016, https://www.wired.com/2016/03/fault-
microsofts-teen-ai-turned-jerk. 
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given output. Efforts to peer into the black box using another algorithm are at an early stage of devel-
opment, the aim of this “explainable AI” being to provide the user with an explanation as to why a 
machine learning system has produced a particular output. 

What are machine learning systems used for? 

A machine learning algorithm can tackle a range of problems and tasks, either as part of a pure soft-
ware system or when controlling a physical robot. Tasks include: 

 classification (to which category does the data belong?) 

 regression (how does input data relate to the output?) 

 clustering (which data inputs are similar to each other?).41 

Uses for classification include image recognition. In this instance, the machine learning algorithm is 
trained (supervised or unsupervised) with data in the form of images, such as cats and dogs. Once 
training is complete, the algorithm analyses new data, classifying images according to categories (e.g. 
cat, dog or neither). Most current image recognition applications employ deep neural network (deep 
learning) techniques, which produce a classification (output) without any explanation as to how or 
why they placed an image in a particular category (see Section 6.) 

5.1.1 Reinforcement learning 

Reinforcement learning differs from supervised and unsupervised learning in that the algorithm is not 
given a specific training data set to build its model. In training, the algorithm uses experience acquired 
through interactions with the environment to learn how to carry out a specific task. The developer 
gives the algorithm a goal, or “reward function” (e.g. to win a game) and the algorithm then builds a 
model (a strategy to win the game in this example) based on trial-and-error interaction with the train-
ing environment. Then, in deployment, the algorithm uses this model to solve the problem (i.e. play 
and win the game). The algorithm is designed – or rather designs itself – based on this goal, rather than 
on specific training data. 

Examples of reinforcement learning include learning a game and then beating human competitors (e.g. 
Deep Mind’s AlphaGo),42 and its main area of application is in decision-making and strategy, as opposed 
to systems that build relationships between input data and outputs, such as image recognition. Rein-
forcement learning is also being used to develop robots that might be able to explore unknown 
environments, albeit with limited success to date, especially for complex tasks. Current robotic systems 
deployed in the real world, such as self-driving cars, generally use traditional rules-based AI methods 
for decision-making and control aspects, and machine learning for computer vision and image pro-
cessing. 

Risks with reinforcement learning 

While reinforcement learning offers new capabilities, it also brings risks, especially if used for safety-
critical tasks. While the human developer defines the goal (reward function) and can exert some con-
trol over the training environment (which is usually a simulation), the way in which the algorithm will 
learn, and then perform a task after deployment, is entirely unpredictable and often leads to un-
foreseen solutions to the task.43 One way to understand this is to think of a drop of water landing on 
the top of a mountain, the structure of which is completely unknown to you. You could predict, based 
on general understanding of gravity and the fact that mountains are elevated, that the drop of water 
will end up in the lake below. But you cannot know what route it will take, what will happen along the 
way, or when it will arrive, nor could you retrace its journey to understand how it arrived. 

                                                           
41 Royal Society, op. cit., p. 31. 
42 D. Silver, et al., “Mastering the game of Go without human knowledge”, Nature, Vol. 550, 19 October 2017, pp. 354–359. 
43 J. Lehman, et al., The Surprising Creativity of Digital Evolution: A Collection of Anecdotes from the Evolutionary Computation and Artificial 
Life Research Communities, Cornell University, v.3. 14 August 2018: https://arxiv.org/abs/1803.03453. 
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Another major difficulty is transferring the results of reinforcement learning from computer simula-
tions to robotic systems in the real world, known as the “sim-to-real” problem. 

Specifying an appropriate reward function can be difficult, and even more so for complex tasks, be-
cause the way the goal is formulated can cause the algorithm to learn and perform in an unforeseen 
way. For example, a simulated six-legged robot that was given the reward function of walking with 
minimum contact between its feet and the ground learned to flip over and “walk” on its back using its 
elbows, achieving zero contact between its feet and the ground.44 

Additional problems include: 

 preventing human override – the algorithm may learn to prevent a human user from deactivating 
it (the “big red button problem”);45 

 reward hacking or gaming – the algorithm learns to exploit errors in the goal it has been given, 
leading to unpredictable consequences;46 

 emerging behaviours – the algorithm carries out actions unrelated to the main goal.47 

All these difficulties become even more acute when two or more reinforcement learning systems in-
teract with each other, leading to extreme complexity and unpredictability. In theory, a reinforcement 
learning system might even learn to set or adjust its own goal, but such concerns are speculative as far 
as current technologies are understood; they may well perform a task in unpredictable ways but will 
not suddenly undertake a completely different task. 

Machine-learning systems are also particularly vulnerable to “adversarial conditions” – changes to 
the environment designed to fool the system, or the use of another machine-learning system to pro-
duce adversarial inputs or conditions using a generative adversarial network (see also Section 6). 

5.2 Trust in AI 

Trust in AI and autonomous systems is a major area of enquiry, especially as regards their use for 
safety-critical applications or where they have other implications for human life and personal free-
dom.48 Some have raised concerns about assumptions of the accuracy of analyses, or predictions, made 
by machine learning systems that are trained on past, limited, data sets. For example, the way many 
systems are developed means that assessments of their accuracy assume that the training data pro-
vides a correct representation of any data the algorithm may encounter “in the wild” during a task, 
whereas this may not be the case. 

There are also concerns regarding the “bias-variance trade-off”: 

 bias in an algorithm makes it too simple, preventing it from identifying key patterns in new data 
(“underfitting”) 

 variance makes the algorithm too sensitive to the specific data it was trained on (“overfitting”)49, 
which means it cannot generalize its analysis when exposed to new data. 

Improving bias can worsen variance and vice-versa.50 

                                                           
44 J. Lehman, et al., op. cit., pp. 13–14. 
45 Orseau, L. and Armstrong, S., Safely Interruptible Agents, DeepMind, 1 January 2016: 

https://deepmind.com/research/publications/safely-interruptible-agents. 
46 D. Amodei, et al., Concrete Problems in AI Safety, Cornell University, v.2, 25 July 2016: https://arxiv.org/abs/1606.06565. 
47 J. Leike, et al., AI Safety Gridworlds, Cornell University, v.2, 28 November 2017, https://arxiv.org/abs/1711.09883. 
48 The Partnership on AI, Safety-Critical AI: Charter, 2018: http://www.partnershiponai.org/wp-content/uploads/2018/07/Safety-Critical-
AI_-Charter.pdf. 
49 Oxford English Dictionary, Overfitting: https://en.oxforddictionaries.com/definition/overfitting. 
50 S. Geman, E. Bienenstock and R. Doursat, “Neural networks and the bias/variance dilemma”, Neural Computation, Vol. 4 No. 1, 1992, 
pp. 1–58. 
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5.2.1 Bias 

Bias in AI and machine learning algorithms is a core problem that can have many facets.51 Types of bias 
include the following: 

Training data bias 

Perhaps the most common form of bias. Since machine learning algorithms learn using training data 
to refine their models, limits on the quantity, quality and nature of this data can introduce bias into 
the functioning of the algorithm. 

Algorithmic focus bias 

The algorithm gives different – or inappropriate – weighting to different elements of the training data 
and/or ignores some aspects of the data, leading, for example, to conclusions that are not supported 
by the data. 

Algorithmic processing bias 

The algorithm itself introduces bias in the way it processes data. Developers often introduce this type 
of bias or “regularization” intentionally as a way of counteracting other biases – for example to limit 
the problem of overfitting, or to account for limitations in the training data set. 

Emergent bias 

Emergent bias can cause an algorithm to function in unexpected ways owing to feedback from the 
environment. It is related to the context in which an algorithm is used, rather than to its technical 
design or the training data.52 

Transfer context bias 

An algorithm is used outside the context in which it was designed to function, possibly causing it to fail 
or behave unpredictably. 

Interpretation bias 

A user (human or machine) misinterprets the output of the algorithm, especially where there is a mis-
match between information provided by the system and the information that the user requires to take 
a particular decision or perform a task. 

5.2.2 Explainability 

One way to build trust in an AI algorithm and its output is to provide explanations for how it produced 
its output that the user can interpret. One can then use these explanations to fine tune the model that 
the algorithm uses to produce its output, and thereby to address bias. However, “explainability” is a 
fundamental problem for machine learning algorithms that are not transparent in the way they func-
tion and provide no explanation for why they produce a given output (see Section 5.1). 

Even when explanations are available, the question remains of whether one can extrapolate the trust 
built by analysing specific training data to trust in analysis of a general data set after deployment. 
Building trust in the model is more difficult, because the number of potential inputs in the environment 
may be infinite. This is currently a concern with self-driving cars; even after billions of kilometres of 

                                                           
51 UNIDIR, Algorithmic Bias and the Weaponization of Increasingly Autonomous Technologies: A Primer, UNIDIR Resources No. 9. D. Danks, 
and A. London, “Algorithmic Bias in Autonomous Systems”, Twenty-Sixth International Joint Conference on Artificial Intelligence, August 
2017. 
52 B. Friedman, and H. Nissenbaum, “Bias in computer systems”, ACM Transactions on Information Systems, Vol. 14 No. 3, July 1996, 
pp. 330–347. 
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testing in simulations, and millions of kilometres of testing in real-world driving situations, it is hard to 
know when one has carried out enough testing and how the system will respond in unpredictable 
circumstances, to be confident that the system can be safely deployed. 

A key issue is that algorithmic bias remains a problem even with a human on the loop to oversee the 
operation of an algorithm and approve the taking of certain actions based on its output, such as when 
a system advises a human decision-maker (decision support). Examples include systems that advise 
doctors on diagnoses or judges on sentencing.53 

5.3 Implications for AI and machine learning in armed conflict 

For the reasons of unpredictability, most current civilian applications of machine learning do not per-
form safety-critical tasks, or if they do, they retain a human on the loop to decide on or authorize 
specific actions. Linking this analysis to considerations of autonomous weapon systems, it seems that 
AI – and especially machine learning – would bring a new dimension of inherent unpredictability by 
design, which raises doubts as to whether they could ever lawfully be used to control the critical func-
tions of selecting and attacking targets. These factors, together with issues of bias and lack of 
explainability, also raise concerns about the use of machine learning in decision-support systems for 
targeting and for other decisions in armed conflict that have significant consequences for human life. 
As well as technical issues, there are important questions about how to ensure a human-centred ap-
proach to the use of AI that maintains human control and judgement.54 
 

6. COMPUTER VISION AND IMAGE RECOGNITION 

Computer vision is a major application of machine learning systems, analysing digital images, video 
and the world around us. 

These systems perform a variety of tasks, including: 

 image classification (describing an image as a whole) 

 object recognition (identifying specific objects within an image) 

 scene understanding (describing what is happening in an image) 

 facial recognition (identifying individual faces, or types of feature) 

 gait recognition (identifying a person by the way they walk) 

 pose estimation (determining the position of a human body) 

 tracking a moving object (in a video) 

 behaviour recognition (determining emotional states and behaviours using “affective computing”). 

Prominent civilian applications include self-driving cars, medical image processing (for example to aid 
doctors with diagnoses) and surveillance systems in law enforcement. However, parties to conflicts 
also use computer vision, for surveillance and intelligence analysis purposes such as identifying objects 
in video feeds from drones,55 and it is being developed for automatic target recognition.56 

Most computer vision algorithms use deep convolutional neural networks, which means they cannot 
provide an explanation for their analysis, and the sheer quantitative complexity makes it difficult to 

                                                           
53 AI Now Institute, AI Now Report 2018, New York University, December 2018, pp. 18–22. 
54 See ICRC, Artificial intelligence and machine learning in armed conflict: A human-centred approach, op. cit. 
55 D. Lewis, N. Modirzadeh and G. Blum, 2017, op. cit. 
56 R. Hammoud and T. Overman, “Automatic Target Recognition XXIX”, Proceedings Vol. 10988, SPIE Defense & Commercial Sensing, 14–19 
April 2019: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10988.toc. B. Schachter, (2018) op. cit. 

https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10988.toc


 
 

ICRC, Autonomy, artificial intelligence and robotics: Technical aspects of human control, August 2019 20 

 

predict or understand how they produce their output (see Section 5.1). Furthermore, their perfor-
mance is largely determined by the quality and completeness of the training data, and consequently 
even with large data sets these systems are likely to exhibit training data bias (see Section 5.2). 

The semantic gap 

But there is a more fundamental problem with the use of computer vision to replace or supplement 
human vision in analysing the world around us: the “semantic gap”. What we mean by this is that 
humans and machines “see” very differently.57 For a computer vision algorithm, an object in an image 
– a cat for example – is represented by a large three-dimensional series of numbers corresponding to 
pixels in the image. After having been trained on images of cats, the algorithm may be able to identify 
a cat in a particular image. However, unlike humans, the algorithm has no understanding of the mean-
ing or concept of a cat (i.e. a mostly domesticated carnivorous mammal with highly developed hearing 
that hunts at night and sleeps most of the day). This lack of understanding means algorithms can make 
mistakes that a human never would, such as classifying a cat in an image as a football. 

Algorithms can learn to make basic associations between an object and its context (e.g. “cat on a 
chair”) but this still does not imply an understanding of the context. These associations can give a 
misleading sense of the algorithm’s capability and can lead to inaccurate results: for example, an image 
classification algorithm trained on images of cats on chairs might only identify cats when they are on 
chairs, or may classify an image containing a chair as a cat. These are also mistakes that a human would 
never make. It is not difficult to imagine the serious consequences if an image recognition system in 
a weapon system were to make this kind of mistake. 

Claims that “machines can now see better than humans” do not tell the full story, and humans and 
machines carry out tasks differently. Computer vision algorithms may be able to classify objects in a 
set of test images into specific categories more quickly and accurately than a human can,58 but while 
effectiveness in carrying out this task is valuable, the fact that an algorithm cannot understand the 
meaning of the objects remains a problem. This core difference – and the mistakes that can occur – 
highlight the risks of using such systems for safety-critical tasks. This partly explains why most civilian 
applications of image recognition that have consequences for human safety – such as diagnosing skin 
cancer – are used to advise human decision-makers rather than replace them.59 For example, the 
system can help identify a melanoma, but decisions on diagnosis and treatment are made by the doc-
tor, who has the benefit of contextual understanding and judgement, together with information from 
other sources (such as patient history and physical examinations). As regards applications in weapon 
systems, this is probably why armed forces currently use such systems to automate the analysis of 
images and video, but not to act on this analysis and initiate an attack or take other decisions that 
could have serious consequences. 

Reliability 

For an algorithm to be useful in a real-world application, developers need to minimize the number of 
false positives, i.e. cases in which the algorithm incorrectly identifies an object. However, reducing this 
sensitivity can also lead to the algorithm missing objects that it should have identified – false negatives. 

                                                           
57 A. Smeulders, et al., “Content-Based Image Retrieval at the End of the Early Years”, IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Vol. 22, No. 12, December 2000, pp. 1349–1380. 
58 A. Hern, “Computers now better than humans at recognising and sorting images”, Guardian, 13 May 2015: 
https://www.theguardian.com/global/2015/may/13/baidu-minwa-supercomputer-better-than-humans-recognising-images. 
O. Russakovsky, ImageNet Large Scale Visual Recognition Challenge, Cornell University, v.3, 30 January 2015: 

https://arxiv.org/abs/1409.0575. 
59 H. Haenssle et al., “Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic 
melanoma recognition in comparison to 58 dermatologists”, Annals of Oncology, Vol. 29, No. 8, August 2018, pp. 1836–1842. A. Trafton, 

“Doctors rely on more than just data for medical decision making”, MIT News Office, 20 July 2018: http://news.mit.edu/2018/doctors-rely-
gut-feelings-decision-making-0720. 
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This type of problem has caused accidents with self-driving cars, where the system either falsely iden-
tified a road hazard and braked unnecessarily and unexpectedly (false positive) or – in the case of one 
fatal accident in 2018 – it failed to identify a pedestrian crossing the road and did not brake at all (false 
negative).60 

Vulnerability to spoofing 

Yet another reason to be cautious about using computer vision algorithms for safety-critical tasks – 
especially in the absence of human verification – is their vulnerability to tricking or spoofing by ad-
versarial images or physical objects (see also Section 4). Adding digital “noise” to an image that is not 
visible to the human eye can often cause a computer vision system to fail. More sophisticated adver-
sarial techniques – for example changing a few pixels in a digital image – can trick an image recognition 
system into mistakes that a human would never make, and this has been demonstrated using adver-
sarial physical objects in the real world. In a well-known example, researchers at the Massachusetts 
Institute of Technology tricked an image classification algorithm into classifying a 3-D printed turtle as 
a rifle, and a 3-D printed baseball as an espresso.61 

Spoofing an algorithm with adversarial changes may not always be simple because these changes need 
to be robust enough to work when an image (or object) is rotated, zoomed, or filtered, and so an 
adversarial image that tricks one algorithm may not trick others. However, demonstrated adversarial 
tricking of image classification algorithms – whether in “white-box” attacks where the functioning of 
the AI algorithm is known or in “black-box” attacks where only the inputs and outputs of the machine 
learning system are known – raises significant concerns about the reliability and predictability of 
these systems in real-world applications. This is likely to be a particularly acute problem in the inher-
ently adversarial environments of conflict, should such algorithms be used in weapon systems. 
Retaining a human on the loop for verification and authorization of a classification made by an algo-
rithm – for example by checking against a live video feed – might provide a means of guarding against 
this problem to a certain extent (see Section 3.4), although researchers have recently shown that ad-
versarial images may also fool humans.62 
 

7. STANDARDS IN CIVILIAN AUTONOMOUS SYSTEMS 

7.1 Safety-critical robotic systems 

The development and use of autonomous systems for safety-critical tasks in the civilian sector raises 
the question as to whether there are lessons and standards for human control – and the human-ma-
chine relationship – that may be relevant to discussions of autonomy and AI weapon systems. 

Because of the unpredictability problem, civilian autonomous robotic systems – and functions – gen-
erally perform only simple tasks in simple environments that present relatively low risks. However, 
some autonomous systems have been performing safety-critical tasks for some time, including indus-
trial robots and aircraft autopilot systems. Others are in development and testing, such as self-driving 
cars. There are similar questions about human control and supervision, procedures for emergency 
intervention and deactivation (including system fail-safes) and predictability and reliability. 
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Existing and emerging industry safety standards reflect these questions, although civilian standards 
often follow the development of technology rather than precede it, and are generally tailored to spe-
cific applications. Many existing safety standards for civilian robotics are hardware focused – largely 
because it is very difficult to verify software reliability – even though software is playing an increasingly 
important role in ensuring reliability and safety. 

Industrial robots 

Standards governing industrial robots are designed to limit the risk of accidents and injuries to workers 
in factories and warehouses.63 For example, a US Robotic Industry Association standard has require-
ments for emergency deactivation and speed control; industrial robots must have a manually-
activated emergency stop function that overrides all other controls, removes power from moving com-
ponents, and remains active until reset manually. The standard also requires that loss of power to the 
robot’s moving parts (e.g. a robot arm) must not lead to the release of a load that presents a hazard 
to operators. The standard also imposes limits on the movement of the robot and stipulates the use 
of safeguarding measures – such as barriers or cages – that prevent human operators from entering 
an area where the robot could endanger them. The robot must be designed to trigger an emergency 
stop if a person enters the safeguarded area while it is in autonomous mode.64 

From the above we can see that in many situations where industrial robots are used, they are recog-
nized as being dangerous by design, and measures are taken to reduce the risk of any contact with 
humans. While industrial robots are highly predictable as regards the repetitive tasks they perform, 
unpredictability in consequences and associated risks arise from their interaction with humans. 
However, the safety standard also contains measures to address the increasing use of “collaborative 
robots”, which share a workspace with human operators. These include requirements for “monitored 
stop”, where the robot stops when it detects an obstacle, speed reduction when a human operator is 
nearby and overall limits on the speed and force that the robot can generate. Other techniques to 
reduce risks to workers include ensuring that a moving robot always takes the same route. 

International standards organizations are developing various standards for autonomous robotic sys-
tems. For example, the International Institute of Electrical and Electronics Engineers (IEEE) has an 
initiative on “Ethically Aligned Design” of autonomous and intelligent systems,65 including develop-
ment of the IEEE P7000 series of standards on: “Transparency of Autonomous Systems”,66 “Algorithmic 
Bias Considerations”,67 “Ontological Standard for Ethically Driven Robotics and Automation Systems”68 
and a “Standard for Fail-Safe Design of Autonomous and Semi-Autonomous Systems”.69 

Aircraft 

Stringent standards exist to ensure the safety of aircraft systems. The European Aviation Safety Agency 
and the US Federal Aviation Administration have similar standards for the reliability of aircraft compo-
nents, including autopilot systems, requiring that they “perform their intended functions under any 
foreseeable operating condition”,70 and are designed so that: 
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i) “any catastrophic failure condition is extremely improbable and does not result from a single failure” 

ii) “any hazardous failure condition is extremely remote” and “any major failure condition is remote”. 

A “catastrophic failure” is one that would result in multiple failures, usually with the loss of the aircraft, 
and an “extremely improbable” failure condition is one that is so unlikely that it is not expected to 
occur during the entire operational life of all aircraft of one type.71 Additionally, standards on flight 
guidance systems – or autopilot – have specifications for human control and reliability, specifically: 
“quick disengagement controls for the autopilot and autothrust functions must be provided for each 
pilot”, “the autopilot must not create an unsafe condition when the flight crew applies an override 
force to the flight controls” and “under any condition of flight” the autopilot must not “produce unac-
ceptable loads on the aeroplane” or “create hazardous deviations in the flight path”.72 

Road vehicles 

Road vehicles are also subject to stringent safety standards – including those employing “automated 
driving systems” (the foundation of self-driving cars). These standards have been developed by stand-
ards bodies such as the International Organization for Standardization (ISO) and the Society of 
Automotive Engineers (SAE). The automotive industry aims for a zero per cent failure rate for electronic 
systems with an operating lifetime of up to 15 years and an ISO standard lays down Automotive Safety 
Integrity Levels for components based on a risk assessment that considers the severity of conse-
quences, probability, and controllability (or ability of the user to avoid the harm).73 

Standards covering human control, predictably and reliability for increasingly autonomous vehicles are 
still under development,74 although the SAE has defined levels of automation to guide their develop-
ment.75 The US National Highway Traffic Safety Administration (NHTSA) has emphasized the need for 

“a robust design and validation process … with the goal of designing HAV highly automated vehicle 
systems free of unreasonable safety risks”.76 The NHTSA requires that the vehicle be able to alert the 
operator when it is not able to function, is malfunctioning, or the driver needs to take over. For systems 
“intended to operate without a human driver or occupant, the remote dispatcher or central control 
authority should be able to know the status of the HAV at all times”.77 The policy adds that “in cases of 
higher automation where a human driver may not be present, the HAV must be able to fall back into 
a minimal risk condition that may not include the driver” – fail-safe mode – which could include “au-
tomatically bringing the vehicle safely to a stop, preferably outside of an active lane of traffic”.78 

Although there are currently no genuinely self-driving cars in private use, they are being tested in a 
number of countries.79 Regulations generally stipulate that these vehicles can only be tested on pub-
lic roads if there is a driver who can always take back control. In California, for instance, regulations 
require that the driver is “either in immediate physical control of the vehicle or is actively monitoring 
the vehicle’s operations and capable of taking over immediate physical control”, and that the driver 
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“knows the limitations of the vehicle’s autonomous technology and is capable of safely operating the 
vehicle in all conditions under which the vehicle is tested on public roads.”80 

Relevance of civilian standards to autonomous weapon systems 

These safety standards for civilian applications may hold lessons for applications in armed conflict. 
While standards for human control of civilian systems are designed to ensure safety and avoid harm, 
standards for autonomous weapon systems must be designed to ensure they can be used with minimal 
risk of indiscriminate effects and other unintended consequences. In any case, “safety” standards for 
human control in weapon systems should be at least as stringent as those for civilian applications. 

7.2 Governance of AI and machine learning 

In parallel with the development of standards for physical autonomous systems, there is now increas-
ing interest in the underlying AI and machine-learning-based software that may both control physical 
robots and advise – or replace – humans in decisions that are safety-critical, or present other signifi-
cant consequences for human life and personal freedom. These have also brought ethical questions to 
the forefront of public debate, and a common aspect of “AI principles” developed and agreed by gov-
ernments, scientists, ethicists, research institutes and technology companies is the importance of the 
human element in ensuring legal compliance and ethical acceptability. 

7.2.1 AI principles 

Future of Life Institute 

The 2017 Asilomar AI Principles emphasize alignment with human values, compatibility with “human 
dignity, rights, freedoms and cultural diversity” and human control: “humans should choose how and 
whether to delegate decisions to AI systems, to accomplish human-chosen objectives”.81 

European Commission 

The European Commission’s High-Level Expert Group on Artificial Intelligence stressed the importance 
of “human agency and oversight”, such that AI systems “support human autonomy and decision-mak-
ing” and ensure human oversight through human-in-the-loop, human-on-the-loop or human-in-
command approaches.82 

OECD 

The Organisation for Economic Co-operation and Development (OECD) Principles on Artificial Intelli-
gence – adopted in May 2019 by all 36 Member States with six other countries – highlight the 
importance of “human-centred values and fairness”, specifying that users of AI “should implement 
mechanisms and safeguards, such as capacity for human determination, that are appropriate to the 
context and consistent with the state of art”.83 
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Beijing Academy of Artificial Intelligence 

The Beijing AI Principles, adopted in May 2019 by a group of leading Chinese research institutes and 
technology companies, state that “continuous efforts should be made to improve the maturity, ro-
bustness, reliability, and controllability of AI systems” and encourage “explorations on human-AI 
coordination … that would give full play to human advantages and characteristics”.84 

Partnership on AI 

The Partnership on AI – a multi-stakeholder initiative established by Apple, Amazon, DeepMind, 
Google, Facebook, IBM and Microsoft – highlighted best practice in safety-critical AI applications as an 
“urgent short-term question, with applications in medicine, transportation, engineering, computer se-
curity, and other domains”.85 

Individual companies 

A number of individual technology companies have published AI principles highlighting the importance 
of human control,86 especially for sensitive applications presenting the risk of harm,87 and emphasizing 
that the “purpose of AI … is to augment – not replace – human intelligence”.88 

Google 

Google has set out seven AI principles to guide its work, emphasizing social benefit, avoiding bias, 
ensuring safety, accountability and privacy. The principles require all their AI technologies to “be ac-
countable to people” and “subject to appropriate human direction and control”. The company has 
ruled out use in “applications that are likely to cause overall harm”, “weapons or other technologies 
whose principal purpose or implementation is to cause or directly facilitate injury to people”, “surveil-
lance violating internationally accepted norms” and for applications “whose purpose contravenes 
widely accepted principles of international law and human rights.”89 

Google has called for guidance from governments and engagement from civil society on key concerns 
raised by AI, especially: 

 explainability standards (or transparency) 

 fairness (or bias) 

 safety (or predictability and reliability) 

 human-AI collaboration (or human control and supervision) 

 liability. 

On human-AI collaboration, the company affirms the necessity for a “human in the loop” in otherwise 
autonomous systems to address issues of safety and fairness (bias), and depending on the nature of 
the application. On the latter Google says “it is likely there will always be sensitive contexts where 
society will want a human to make the final decision, no matter how accurate an AI system is or the 
time/cost benefits of full automation.”90 The company has also highlighted the essential differences 

                                                           
84 Beijing Academy of Artificial Intelligence (BAAI), Beijing AI Principles, 28 May 2019: https://baip.baai.ac.cn/en. 
85 The Partnership on AI, op. cit. 
86 Google, AI at Google: Our principles, 7 June 2018: https://www.blog.google/technology/ai/ai-principles. “We will design AI systems that 

provide appropriate opportunities for feedback, relevant explanations, and appeal. Our AI technologies will be subject to appropriate 
human direction and control.” 
87 Microsoft, Microsoft AI principles, 2019: https://www.microsoft.com/en-us/ai/our-approach-to-ai. R. Sauer, Six principles to guide 

Microsoft’s facial recognition work, Microsoft, 17 December 2018: https://blogs.microsoft.com/on-the-issues/2018/12/17/six-principles-
to-guide-microsofts-facial-recognition-work. 
88 IBM, IBM’s Principles for Trust and Transparency, 30 May 2018: https://www.ibm.com/blogs/policy/trust-principles. 
89 Google, 2018, op. cit. 
90 Google, Perspectives on Issues in AI Governance, January 2019 p. 24: http://ai.google/perspectives-on-issues-in-AI-governance. 
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between humans and AI, stressing that “machines will never be able to bring a genuine humanity to 
their interactions, no matter how good they get at faking it.”91 

As regards regulation, Google said that “governments may wish to identify red-line areas where hu-
man involvement is deemed imperative” such as in “making legal judgments of criminality, or in 
making certain life-altering decisions about medical treatment” and asks for “broad guidance as to 
what human involvement should look like” in different contexts.92 It concludes that some “contentious 
uses of AI” could represent such “a major and irrevocable shift in the scale of possible harm that could 
be inflicted” including “anything from a new kind of weapon to an application that fundamentally over-
hauls everyday norms (e.g. the ability to be anonymous in a crowd, or to trust in what you see)”, that 
“additional rules would be of benefit”.93 

Microsoft 

Microsoft has also been outspoken on sensitive applications of AI, in particular facial recognition, a 
technology which it is at the forefront of developing, calling for governments to adopt new regulation94 
and issuing principles to guide its work. Their principle on accountability says the company will en-
courage use of facial recognition technology “in a manner that ensures an appropriate level of human 
control for uses that may affect people in consequential ways”, requiring a “human-in-the-loop” or 
“meaningful human review”. Microsoft defines sensitive uses as those involving “risk of bodily or emo-
tional harm to an individual, where an individual’s employment prospects or ability to access financial 
services may be adversely affected, where there may be implications on human rights, or where an 
individual’s personal freedom may be impinged.”95 

7.2.2 Relevance to discussions about the use of AI in armed conflict 

Since applications of AI and machine learning in weapon systems – and in armed conflict more broadly 
– are likely to be among the most sensitive, these broader governance discussions may be indicative 
of necessary constraints and of the type and degree of human control and human-machine interac-
tion that will be needed. 
 

8. CONCLUSIONS 

Autonomous weapon systems, which can select and attack targets without human intervention or self-
initiate attacks raise concerns about loss of human control over the use of force. Like most States, the 
ICRC has called for human control to be retained to ensure compliance with international humanitarian 
law and ethical acceptability, and it has urged a focus on determining what human control means in 
practice.96 

Based on the foregoing analysis, experience the civilian sector with autonomy, robotics and AI can yield 
insights for discussions about ensuring meaningful, effective and appropriate human control over 
weapon systems and the use of force, including in the following areas: 

                                                           
91 Ibid, p. 21. “Such differences should be front of mind when thinking about the kind of tasks and settings in which to deploy an AI system 
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Human control 

All autonomous (robotic) systems that operate without human intervention, based on interaction 
with their environment, raise questions about how to ensure effective human control. 

Humans can exert some control over autonomous systems through human-on-the-loop supervision 
and intervention. This requires the operator to have situational awareness, enough time to intervene, 
and a mechanism through which to intervene (a communication link or physical controls) in order to 
take back control or deactivate the system. However, human-on-the-loop control is not a panacea, 
owing to such human-machine interaction problems as automation bias, lack of operator situational 
awareness and the moral buffer. 

Predictability and reliability 

It is difficult to ensure and verify the predictability and reliability of an autonomous (robotic) system. 
However, setting boundaries or imposing constraints on the operation of an autonomous system – in 
particular on the task, the environment, the timeframe of operation and the scope of operation over 
an area – can render the consequences of using such a system more predictable. 

There is an important distinction between reliability – a measure of how often a system fails – and 
predictability – a measure of how the system will perform in a particular circumstance. There is a fur-
ther distinction between predictability in a narrow sense of knowing the process by which the system 
functions and carries out a task, and predictability in a broad sense of knowing the outcome that will 
result. In the context of weapon systems, both are important for ensuring compliance with interna-
tional humanitarian law. 

AI and machine learning 

AI algorithms – and especially machine learning systems – bring a new dimension of unpredictability 
to autonomous (robotic) systems. The “black box” manner in which most machine learning systems 
function today makes it difficult – and in most cases impossible – for the user to know how the system 
reaches its output. These systems are also subject to bias, whether by design or in use. Furthermore, 
they do not provide explanations for their outputs, which seriously complicates establishing trust in 
their use and exacerbates the already significant difficulty of testing and verifying the performance of 
autonomous systems. 

Computer vision is an important application of machine learning, which is relevant to autonomous 
weapon systems. Most computer vision systems use deep learning, of which the functioning is not 
predictable or transparent, and which can be subject to bias. More fundamentally, machines do not 
see like humans. They have no understanding of meaning or context, which means they make mistakes 
that a human never would. 

Standards for human control 

We can learn lessons from industry standards for civilian safety-critical autonomous robotic systems, 
such as industrial robots, aircraft autopilot systems and self-driving cars, which are stringent in their 
requirements for human supervision, intervention, deactivation, predictability, reliability and opera-
tional constraints. Leading civilian technology developers in AI and machine learning have also 
stressed the need to ensure human control and judgement for sensitive uses – and to address safety 
and bias – especially where applications can have serious consequences for people’s lives. 

Towards limits on autonomy in weapon systems 

These insights from the fields of autonomous systems, AI and robotics reinforce and expand some of 
the ICRC’s viewpoints and concerns regarding autonomy in the critical functions of weapon systems. 
The consequences of using autonomous weapon systems are unpredictable because of uncertainty 
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for the user regarding the specific target, and the timing and location of any resulting attack. These 
problems become more severe as the environment or the task become more complex, or freedom 
of action in time and space increases. Human-on-the-loop supervision, intervention and the ability to 
deactivate are absolute minimum requirements for countering this risk, but the system must be de-
signed to allow for meaningful, timely, human intervention – and even that is no panacea. 

In establishing limits on autonomy in weapon systems it may be useful to consider sources of unpre-
dictability that pose problems for human control and responsibility. All autonomous weapon systems 
will always display a degree of unpredictability, stemming from their interaction with the environ-
ment. It might be possible to mitigate this by imposing operational constraints on the task, the 
timeframe of operation, the scope of operation over an area and the environment. However, the use 
of software control based on AI – and especially machine learning – brings with it the risk of inherent 
unpredictability, lack of explainability and bias. This heightens the ICRC’s concerns regarding the con-
sequences of using AI to control the critical functions of weapon systems, and it raises the questions 
of how to maintain human control and judgement in any use of machine learning in decision-support 
systems for targeting.97 

This review of technical issues highlights the difficulty of exerting human control over autonomous 
(weapon) systems and shows how AI and machine learning could exacerbate this problem exponen-
tially. Ultimately it confirms the need for States to work urgently to establish limits on autonomy in 
weapon systems.  

It reinforces the ICRC’s view that States should agree on the type and degree of human control re-
quired to ensure compliance with international law and to satisfy ethical concerns, while also 
underlining its doubts that autonomous weapon systems could be used in compliance with interna-
tional humanitarian law in all but the narrowest of scenarios and the simplest of environments. 
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